Dehn Twists

Darren Zheng

University of Pennsylvania

May 1, 2025

Modern topology uses a lot of algebraic invariants (homotopy, homology groups, etc.)

Modern topology uses a lot of algebraic invariants (homotopy, homology groups, etc.)

Definition (Mapping class group)

Let ${\cal S}$ be a connected, orientable surface, possibly with punctures. Then, the *mapping class group* of ${\cal S}$ is

$$\mathsf{Mod}(\mathcal{S}) = \pi_0(\mathsf{Homeo}^+(\mathcal{S}, \partial \mathcal{S}))$$

 $\cong \mathsf{Homeo}^+(\mathcal{S}, \partial \mathcal{S})/\mathsf{isotopy}$ equiv

In other words, these are the orientation-preserving homeomorphisms of a surface up to homotopy. Elements are called mapping classes.

Example

Let $S_{q,n}$ with genus g and n punctures.

Let og,n with genus g and n panetares.	
S	Mod(S)
$D^2, S^2, S_{0,1}$	trivial
$S_{0,2}$	$\mathbb{Z}/2$
$S_{0,3}$	Σ_3
$A = S^1 \times [0,1]$	$\mathbb Z$
T^2	$SL(2,\mathbb{Z})$
$S_{0,4}$	$PSL(2,\mathbb{Z})\ltimes (\mathbb{Z}/2\times\mathbb{Z}/2)$

Darren Zheng (UP) Dehn Twists May 1, 2025 3/1

What might the generators of Mod(S) be?

What might the generators of Mod(S) be?

Figure: Two views of a Dehn twist

- Above, $T: A \to A$ is a map on the annulus $S^1 \times [0, 1]$ given by $T(\theta, t) = (\theta + 2\pi t, t)$.
- This map fixes the boundary ∂A .

Darren Zheng (UP) Dehn Twists May 1, 2025 4/17

Definition (Dehn Twist)

Let N be a regular neighborhood about a simple, closed curve a in S. Take an orientation-preserving homeomorphism $\phi: A \to N$. Then, $T_a: S \to S$ is a *Dehn twist*.

$$T_a(x) = \begin{cases} \phi \circ T \circ \phi^{-1}(x) & \text{if } x \in N \\ x & \text{if } x \in S \setminus N \end{cases}$$

5/17

Definition (Dehn Twist)

Let N be a regular neighborhood about a simple, closed curve a in S. Take an orientation-preserving homeomorphism $\phi: A \to N$. Then, $T_a: S \to S$ is a *Dehn twist*.

$$T_a(x) = \begin{cases} \phi \circ T \circ \phi^{-1}(x) & \text{if } x \in N \\ x & \text{if } x \in S \setminus N \end{cases}$$

1 Dehn twists are invariant of the choice of ϕ and N. Thus, T_a really is a function of an isotopy class α containing a!

Definition (Dehn Twist)

Let N be a regular neighborhood about a simple, closed curve a in S. Take an orientation-preserving homeomorphism $\phi: A \to N$. Then, $T_a: S \to S$ is a *Dehn twist*.

$$T_a(x) = \begin{cases} \phi \circ T \circ \phi^{-1}(x) & \text{if } x \in N \\ x & \text{if } x \in S \setminus N \end{cases}$$

- **1** Dehn twists are invariant of the choice of ϕ and N. Thus, T_a really is a function of an isotopy class α containing a!
- **2** T_{α} are well-defined as an elements of Mod(S).

Darren Zheng (UP) Dehn Twists May 1, 2025 5/17

Example

Figure: Dehn twist on torus

Question: How do Dehn twists interact in Mod(S)?

Question: How do Dehn twists interact in Mod(S)?

Theorem

For two isotopy classes α, β of simple closed curves,

$$i(\alpha, \beta) = 0 \iff T_{\alpha}T_{\beta} = T_{\beta}T_{\alpha}$$

In other words, the Dehn twists commute iff the curves do not intersect.

Question: How do Dehn twists interact in Mod(S)?

Theorem

For two isotopy classes α, β of simple closed curves,

$$i(\alpha, \beta) = 0 \iff T_{\alpha}T_{\beta} = T_{\beta}T_{\alpha}$$

In other words, the Dehn twists commute iff the curves do not intersect.

Definition

The geometric intersection number between classes of curves α, β is

$$i(\alpha,\beta) = \min\{|a \cap b| : a \in \alpha, b \in \beta\}$$

Example

Figure: Torus with two punctured points

Idea: We get a nice result if the curves don't interact. What about higher numbers of intersections?

Idea: We get a nice result if the curves don't interact. What about higher numbers of intersections?

Theorem (Braid Relation)

If α and β are isotopy classes of simple closed curves with $i(\alpha, \beta) = 1$, then

$$T_{\alpha}T_{\beta}T_{\alpha}=T_{\beta}T_{\alpha}T_{\beta}$$

Note equivalent to $(T_aT_b)T_a(T_aT_b)^{-1}=T_b$

Figure: Pictorial argument of $T_aT_b(a)=b$

Darren Zheng (UP) Dehn Twists May 1, 2025 10/17

Note equivalent to $(T_aT_b)T_a(T_aT_b)^{-1}=T_b$

Figure: Pictorial argument of $T_aT_b(a)=b$

Surprisingly, the converse is true as well!

Darren Zheng (UP) Dehn Twists May 1, 2025 10/17

Again, we want to look at higher intersection numbers.

Theorem

Let α, β be isotopy classes of simple, closed curves and $i(\alpha, \beta) \geq 2$. Then, the group generated by $\{T_a, T_b\}$ is free. Again, we want to look at higher intersection numbers.

Theorem

Let α, β be isotopy classes of simple, closed curves and $i(\alpha, \beta) \geq 2$. Then, the group generated by $\{T_a, T_b\}$ is free.

Lemma (Ping-Pong)

Let a group G act on a set X. Pick $g_1, \ldots, g_n \in G$ and disjoint, nonempty subsets X_1, \ldots, X_n of X, such that for any $i \neq j$, we have

$$g_i^k(X_j) \subset X_i$$
 for all k

Then, the group generated by g_i is free of rank n.

Darren Zheng (UP) Dehn Twists May 1, 2025 11/

Example (Hyperbolic transformations)

Figure: Hyperbolic isometries

12/17

With these theorems, we get a nice classification of groups generated by two Dehn twists.

	Group generated by T_a^{\jmath}, T_b^k
i(a,b) = 0, a = b	$\langle T_a^j, T_b^k \rangle \approx \langle x, y x = y \rangle \approx \mathbb{Z}$
$i(a,b) = 0, a \neq b$	$\langle T_a^j, T_b^k \rangle \approx \langle x, y xy = yx \rangle \approx \mathbb{Z}^2$
i(a,b) = 1	$\langle T_a, T_b \rangle \approx \langle x, y xyx = yxy \rangle$
	$\langle T_a^2, T_b \rangle \approx \langle x, y \mid xyxy = yxyx \rangle$
	$\langle T_a^3, T_b \rangle \approx \langle x, y xyxyxy = yxyxyx \rangle$
	$\langle T_a^j, T_b^k \rangle \approx \langle x, y \rangle \approx F_2$ otherwise
$i(a,b) \ge 2$	$\langle T_a^j, T_b^k \rangle \approx \langle x, y \rangle \approx F_2$

- One can notice there are two other cases for i(a, b) = 1.
 - $\langle T_a^2, T_b \rangle$ is index 3 subgroup of B_3 (fix "first" strand)
 - $\langle T_a^3, T_b \rangle$ is index 8 of B_3 (Luis Paris)

Darren Zheng (UP) Dehn Twists May 1, 2025 13/

Theorem (Dehn-Lickorish)

For any orientable, compact surface *S*, the mapping class group is generated by Dehn twists.

Theorem (Dehn-Lickorish)

For any orientable, compact surface S, the mapping class group is generated by Dehn twists.

• Lickorish twist theorem - Possible with 3g - 1 explicit curves!

Theorem (Dehn-Lickorish)

For any orientable, compact surface S, the mapping class group is generated by Dehn twists.

- Lickorish twist theorem Possible with 3g-1 explicit curves!
- In fact, Humpreis (1978) showed that 2g + 1 curves suffice and is sharp.

Theorem (Dehn-Lickorish)

For any orientable, compact surface S, the mapping class group is generated by Dehn twists.

- Lickorish twist theorem Possible with 3g-1 explicit curves!
- In fact, Humpreis (1978) showed that 2g + 1 curves suffice and is sharp.
- Classification of groups generated by 3 Dehn twists is wide-open.

Main Reference

"A Primer on Mapping Class Groups" by Farb & Margalit

15/17

Acknowledgments

- Thanks to Ellis for being my wonderful mentor this semester
- And the whole Directed Reading Program, especially the organizers Maxine and Léo

16/17

Questions?